上海交通大学医学院附属新华医院骨科;上海大学转化医学研究院;
股骨头缺血性坏死(ANFH)是由于血供不足导致股骨头骨组织死亡的疾病,会引起髋关节疼痛和功能障碍,严重损害患者运动功能。ANFH的病理生理包括血供不足导致的骨细胞缺氧、骨代谢失衡、细胞凋亡及炎症反应,早期基本无症状,晚期常表现为关节功能严重受损。目前,ANFH采取保守治疗和手术干预均存在局限性,如效果不佳和复发风险等。血管化骨类器官作为一种新兴治疗手段,模拟股骨头微环境,增强血管生成,促进骨细胞再生,从而有效应对早期ANFH,是更具针对性的干预方案。为进一步推动血管化骨类器官技术发展和临床转化研究,本文就ANFH治疗面临的挑战、血管化骨类器官构建策略以及血管化骨类器官在ANFH修复中的应用潜力进行阐述,以期为相关领域的科研和临床工作者提供参考和启发,加速这一新兴技术的创新突破和转化应用,从而造福更多早期ANFH患者。
84 | 0 | 42 |
下载次数 | 被引频次 | 阅读次数 |
[1] Lu Y, Chen X, Lu X, et al. Reconstructing avascular necrotic femoral head through a bioactive β-TCP system:from design to application[J]. Bioact Mater, 2023, 28:495-510.
[2] Goncharov EN, Koval OA, Nikolaevich Bezuglov E, et al.Conservative treatment in avascular necrosis of the femoral head:a systematic review[J]. Med Sci(Basel), 2024, 12(3):32.
[3] Singh M, Singh B, Sharma K, et al. A molecular troika of angiogenesis, coagulopathy and endothelial dysfunction in the pathology of avascular necrosis of femoral head:a comprehensive review[J]. Cells, 2023, 12(18):2278.
[4] Howse L, Bendall S. Avascular necrosis of the femoral head:management remains controversial[J]. J Orthop Traumatol, 2023, 37(4):246-252.
[5] Sprangers J, Zaalberg IC, Maurice MM. Organoid-based modeling of intestinal development, regeneration, and repair[J]. Cell Death Differ, 2021, 28(1):95-107.
[6] Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver[J]. Science, 2021, 371(6531):839-846.
[7] Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduct Target Ther, 2022, 7(1):168.
[8] Wang J, Wu Y, Li G, et al. Engineering large-scale selfmineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid Bioinks[J]. Adv Mater, 2024, 36(30):2309875.
[9] Wang J, Chen X, Li R, et al. Standardization and consensus in the development and application of bone organoids[J].Theranostics, 2025, 15(2):682-706.
[10] Zhao X, Li N, Zhang Z, et al. Beyond hype:unveiling the real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids[J]. J Nanobiotechnology, 2024, 22(1):500.
[11] Murab S, Hawk T, Snyder A, et al. Tissue engineering strategies for treating avascular necrosis of the femoral head[J].Bioengineering(Basel), 2021, 8(12):200.
[12] Konarski W, Pobo?y T,?liwczyński A, et al. Avascular necrosis of femoral head-overview and current state of the art[J]. Int J Environ Res Public Health, 2022, 19(12):7348.
[13] Ma T, Wang Y, Ma J, et al. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels:a systematic review[J]. J Orthop Surg Res,2024, 19(1):265.
[14] Tencerova M, Kassem M. The bone marrow-derived stromal cells:commitment and regulation of adipogenesis[J].Front Endocrinol(Lausanne), 2016, 7:127.
[15] Lou Y, Wu J, Zhong Y, et al. Etiology, pathology, and treatment of osteonecrosis of the femoral head in adolescents:a comprehensive review[J]. Medicine(Baltimore), 2024, 103(30):e39102.
[16] Duan P, Wang H, Yi X, et al. C/EBPα regulates the fate of bone marrow mesenchymal stem cells and steroid-induced avascular necrosis of the femoral head by targeting the PPARγ signalling pathway[J]. Stem Cell Res Ther, 2022, 13(1):342.
[17] Goncharov EN, Koval OA, Nikolaevich Bezuglov E, et al.Conservative treatment in avascular necrosis of the femoral head:a systematic review[J]. Med Sci(Basel), 2024, 12(3):32.
[18]中国医师协会骨科医师分会骨循环与骨坏死专业委员会,中华医学会骨科分会骨显微修复学组,国际骨循环学会中国区.中国成人股骨头坏死临床诊疗指南(2020)[J].中华骨科杂志, 2020, 40(20):1365-1376.
[19] Mont MA, Salem HS, Piuzzi NS, et al. Nontraumatic osteonecrosis of the femoral head:where do we stand today?:a5-year update[J]. J Bone Joint Surg Am, 2020, 102(12):1084-1099.
[20] Zhang Y, Wang X, Jiang C, et al. Biomechanical research of medial femoral circumflex vascularized bone-grafting in the treatment of early-to-mid osteonecrosis of the femoral head:a finite element analysis[J]. J Orthop Surg Res, 2022,17(1):441.
[21] Ackerman IN, Bennell KL, Osborne RH. Decline in healthrelated quality of life reported by more than half of those waiting for joint replacement surgery:a prospective cohort study[J]. BMC Musculoskelet Disord, 2011, 12:108.
[22] Li M, Ma Y, Fu G, et al. 10-year follow-up results of the prospective, double-blinded, randomized, controlled study on autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of the femoral head[J]. Stem Cell Res Ther, 2020, 11(1):287.
[23] Lou P, Zhou G, Wei B, et al. Bone grafting for femoral head necrosis in the past decade:a systematic review and network meta-analysis[J]. Int J Surg, 2023, 109(3):412-418.
[24] Quaranta M, Miranda L, Oliva F, et al. Osteotomies for avascular necrosis of the femoral head[J]. Br Med Bull,2021, 137(1):98-111.
[25] Maruyama M, Moeinzadeh S, Guzman RA, et al. The efficacy of lapine preconditioned or genetically modified IL4over-expressing bone marrow-derived mesenchymal stromal cells in corticosteroid-associated osteonecrosis of the femoral head in rabbits[J]. Biomaterials, 2021, 275:120972.
[26] Zhao Y, Li S, Feng M, et al. Effects of puerarin-loaded tetrahedral framework nucleic acids on osteonecrosis of the femoral head[J]. Small, 2023, 19(41):2302326.
[27] Aarvold A, Smith JO, Tayton ER, et al. A tissue engineering strategy for the treatment of avascular necrosis of the femoral head[J]. Surgeon, 2013, 11(6):319-325.
[28] Zhao D, Saiding Q, Li Y, et al. Bone organoids:recent advances and future challenges[J]. Adv Healthc Mater, 2024,13(5):2302088.
[29] Salewskij K, Penninger JM. Blood vessel organoids for development and disease[J]. Circ Res, 2023, 132(4):498-510.
[30]王健,白龙,陈晓,等.骨类器官的构建、评价与应用专家共识(2024版)[J].中华创伤杂志, 2024, 40(11):974-986.
[31] Wang J, Zhou D, Li R, et al. Protocol for engineering bone organoids from mesenchymal stem cells[J]. Bioact Mater,2025, 45:388-400.
[32] Mansour AA, Gon?alves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5):432-441.
[33] Salas AP, Mazek J, O'Donnell J, et al. Hip arthroscopy and core decompression for avascular necrosis of the femoral head using a specific aiming guide:a step-by-step surgical technique[J]. Arthrosc Tech, 2021, 10(12):e2775-e2782.
[34] Ji Q, Li X, Luo S, et al. Long-term outcomes of arthroscopic synovectomy and core decompression through multiple small bone holes for early-stage avascular necrosis of the femoral head[J]. Arthroplasty, 2023, 5(1):17.
[35] Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J].Nature, 2019, 565(7740):505-510.
[36] Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders[J]. Nat Rev Neurol, 2018, 14(3):133-150.
[37] Kim JW, Nam SA, Yi J, et al. Kidney decellularized extracellular matrix enhanced the vascularization and maturation of human kidney organoids[J]. Adv Sci(Weinh), 2022, 9(15):e2103526.
[38] Garreta E, Moya-Rull D, Marco A, et al. Natural hydrogels support kidney organoid generation and promote in vitro angiogenesis[J]. Adv Mater, 2024, 36(34):2400306.
[39] Low JH, Li P, Chew EGY, et al. Generation of human PSCderived kidney organoids with patterned nephron segments and a de novo vascular network[J]. Cell Stem Cell, 2019, 25(3):373-387. e9.
[40] Dao L, You Z, Lu L, et al. Modeling blood-brain barrier formation and cerebral cavernous malformations in human PSC-derived organoids[J]. Cell Stem Cell, 2024, 31(6):818-833. e11.
[41] Carolina E, Kuse Y, Okumura A, et al. Generation of human iPSC-derived 3D bile duct within liver organoid by incorporating human iPSC-derived blood vessel[J]. Nat Commun, 2024, 15(1):7424.
[42] Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J].Nat Methods, 2019, 16(3):255-262.
基本信息:
DOI:
中图分类号:R681.8
引用信息:
[1]王健,白龙,陈晓等.血管化骨类器官修复早期股骨头缺血性坏死策略[J].中华骨与关节外科杂志,2025,18(03):193-199.
基金信息:
国家自然科学基金(82230071); 上海申康医院发展中心研究型医师创新转化能力培训项目(SHDC2023CRT013); 上海市创新医疗器械应用示范项目(23SHS05700-01)