0 | 0 | 4 |
下载次数 | 被引频次 | 阅读次数 |
目的:运用有限元分析方法评估新型后路带融合器寰枢椎内固定系统的生物力学稳定性。方法:选取健康成年男性志愿者1名行上颈椎薄层CT扫描,处理图像,建立正常上颈椎有限元模型;去除横韧带、进一步更改其他韧带材料参数构建寰枢椎失稳模型;加载新型后路带融合器寰枢椎内固定系统至寰枢椎失稳模型上,根据枢椎采用的固定方式,分别建立两种新型后路带融合器寰枢椎内固定系统的有限元模型(融合器模型),分别为枢椎椎板螺钉固定(模型1)及椎弓根螺钉固定(模型2);对各模型分别施加1.5 N·m扭矩,对屈曲、后伸、侧屈及旋转状态下的活动度及融合器和椎间盘应力进行计算分析,并与寰枢椎椎弓根钉有限元模型(椎弓根螺钉模型)比较。结果:与正常上颈椎有限元模型相比,模型1 C1~2在屈曲+后伸、侧屈、旋转状态下的活动度分别减少了93.0%、92.6%、99.5%,而模型2分别减少了93.2%、92.6%、99.9%。两种融合器模型均明显限制了寰枢椎(C1~2)在不同状态下的活动度;对颈枕(C0~1)在屈曲+后伸状态下活动度有一定的影响,对颈枕在侧屈及旋转状态下活动度的影响较小;对C2~3在屈曲+后伸、侧屈、旋转状态下活动度的影响均较小。两种融合器模型在不同状态下C2/3椎间盘最大应力与正常上颈椎有限元模型几乎一致。两种融合器模型在不同状态下的应力均较为分散,未见明显应力集中。结论:新型后路带融合器寰枢椎内固定系统具有良好的生物力学稳定性,可应用于寰枢椎后路内固定植骨融合术。
Abstract:Objective: To evaluate the biomechanical stability of a novel posterior atlantoaxial internal fixation system with fusion cage using finite element analysis. Methods: A healthy adult male volunteer underwent thin-slice CT scanning of the upper cervical spine. The images were processed to establish a finite element model of the normal upper cervical spine(Normal Model). An instability model(Instability Model) was then constructed by removing the transverse ligament and adjusting the material parameters of other ligaments. The novel posterior atlantoaxial internal fixation system with fusion cage was applied to the Instability Model. According to the different fixation methods used at the axis, two new finite element models of the novel fixation system(Fusion Cage Models) were established: laminar screw fixation(Model 1) and pedicle screw fixation(Model 2). Each model was subjected to a torque of 1.5 N·m, and the range of motion(ROM), as well as stress on the cage and intervertebral disc, were analyzed under flexion-extension, lateral bending, and axial rotation. The results were compared with those from a finite element model of conventional atlantoaxial pedicle screw fixation(Pedicle Screw Model). Results: Compared with the Normal Model, the ROM of C1-2 in Model 1 decreased by 93.0%, 92.6%, and 99.5% under flexion-extension, lateral bending, and axial rotation, respectively; while Model 2 showed decreases of 93.2%, 92.6%, and 99.9% respectively. Both Fusion Cage Models significantly restricted the ROM at C1-2 under all conditions. They had a moderate effect on the ROM at the cervico-occipital junction(C0-1) under flexion-extension, but only a slight effect under lateral bending and axial rotation. The influence on the ROM at C2-3 was minimal under all conditions. The maximum stress on the C2/3 intervertebral disc in both Fusion Cage Models was almost identical to that in the Normal Model under all conditions. In various states, stress distribution in the novel fixation system was dispersed without obvious concentration. Conclusions: The novel posterior atlantoaxial internal fixation system with fusion cage demonstrates excellent biomechanical stability and can be applied in posterior atlantoaxial internal fixation and bone graft fusion.
[1] Zhou X, Li S, Liu H, et al. Comparison of two bone grafting techniques applied during posterior C1-C2 screw-rod fixation and fusion for treating reducible atlantoaxial dislocation[J]. World Neurosurg, 2020, 143:e253-e260.
[2] Chen Q, Brahimaj BC, Khanna R, et al. Posterior atlantoaxial fusion:a comprehensive review of surgical techniques and relevant vascular anomalies[J]. J Spine Surg, 2020, 6(1):164-180.
[3] Cavalcanti Ku?maul A, Kühlein T, Greiner A, et al. Improving stability of atlantoaxial fusion:a biomechanical study[J]. Eur J Orthop Surg Traumatol, 2023, 33(6):2497-2503.
[4] Zhang Y, Li C, Li L, et al. Design a novel integrated screw for minimally invasive atlantoaxial anterior transarticular screw fixation:a finite element analysis[J]. J Orthop Surg Res, 2020, 15(1):244.
[5] Kleinstück FS, Fekete TF, Loibl M, et al. Patient-rated outcome after atlantoaxial(C1-C2)fusion:more than a decade of evaluation of 2-year outcomes in 126 patients[J]. Eur Spine J, 2021, 30(12):3620-3630.
[6]潘保顺,陈金水,方镇,等.寰枢椎后方结构解剖学研究及临床意义[J].中国临床解剖学杂志, 2022, 40(6):633-638.
[7]潘保顺,方镇,高明杰,等.基于影像学数据设计带融合器的寰枢椎后路内固定系统[J].中国组织工程研究, 2022,26(9):1372-1376.
[8] Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure[J]. J Bone Joint Surg Am,1977, 59(7):954-962.
[9] Dvorak J, Schneider E, Saldinger P, et al. Biomechanics of the craniocervical region:the alar and transverse ligaments[J]. J Orthop Res, 1988, 6(3):452-461.
[10] Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling[J]. Clini Biomech(Bristol), 2001, 16(1):1-27.
[11] Myklebust JB, Pintar F, Yoganandan N, et al. Tensile strength of spinal ligaments[J]. Spine(Phila Pa 1976),1988, 13(5):526-531.
[12] Panjabi MM, Dvorák J, Crisco J, et al.[Instability in injury of the alar ligament. A biomechanical model][J]. Orthopade, 1991, 20(2):112-120.
[13] Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine(Phila Pa 1976), 2004, 29(4):376-385.
[14] Liu C, Kamara A, Yan Y. Biomechanical study of C1 posterior arch crossing screw and C2 lamina screw fixations for atlantoaxial joint instability[J]. J Orthop Surg Res, 2020, 15(1):156.
[15]陈金水,倪斌,陈博,等.寰枢椎脱位三维非线性有限元模型的建立和分析[J].中国脊柱脊髓杂志, 2010, 20(9):749-753.
[16] Grob D, Crisco JJ, Panjabi MM, et al. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques[J]. Spine(Phila Pa 1976), 1992, 17(5):480-490.
[17] Lasswell TL, Cronin DS, Medley JB, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J]. Spine J, 2017, 17(11):1755-1764.
[18]陈金水,林松庆,徐皓,等.两种寰枢椎后路内固定系统的三维有限元分析[J].中国矫形外科杂志, 2016, 24(13):1217-1222.
[19] Wada K, Tamaki R, Inoue T, et al. Comparison of atlantoaxial fusion with transarticular screws and C1 lateral massC2 screws using intraoperative O-arm navigation[J]. World Neurosurg, 2020, 141:e1005-e1009.
[20] Byun CW, Lee DH, Park S, et al. The association between atlantoaxial instability and anomalies of vertebral artery and axis[J]. Spine J, 2022, 22(2):249-255.
[21] Huang PJ, Lin JH, Chiang YH. Miniplate-augmented interlaminar fusion in C1-C2 screwing[J]. World Neurosurg,2020, 138:e634-e641.
[22] Goel A, Kulkarni AG, Sharma P. Reduction of fixed atlantoaxial dislocation in 24 cases:technical note[J]. J Neurosurg,2005, 2(4):505-509.
[23] Lvov I, Grin A, Talypov A, et al. Efficacy and safety of Goel-Harms technique in upper cervical spine surgery:a systematic review and meta-analysis[J]. World Neurosurg,2022, 167:e1169-e1184.
[24] Natsis K, Piperaki ET, Fratzoglou M, et al. Atlas posterior arch and vertebral artery's groove variants:a classification,morphometric study, clinical and surgical implications[J].Surg Radiol Anat, 2019, 41(9):985-1001.
[25]邹小宝,马向阳,杨浩志,等.新型后路寰枢椎板间融合器生物力学特征的有限元分析[J].中国组织工程研究,2019, 23(28):4529-4534.
[26]邹小宝,马向阳,王宾宾,等. CT测量成人寰枢椎后方部分结构数据设计寰枢椎板间融合器[J].中国组织工程研究, 2020, 24(36):5837-5842.
[27] Ryu JI, Bak KH, Yi HJ, et al. Evaluation of the efficacy of titanium mesh cages with posterior C1 lateral mass and C2pedicle screw fixation in patients with atlantoaxial instability[J]. World Neurosurg, 2016, 90:103-108.
[28]姜家玺,张屹阳,金国鑫.齿状突骨折的两种内固定方式有限元分析[J].中国骨与关节损伤杂志, 2021, 36(11):1125-1128.
[29]马向阳,尹庆水,吴增晖,等.枢椎椎弓根螺钉进钉点的解剖定位研究[J].中华外科杂志, 2006, 44(8):562-564.
[30] Singh DK, Shankar D, Singh N, et al. C2 screw fixation techniques in atlantoaxial instability:a technical review[J].J Craniovertebr Junction Spine, 2022, 13(4):368-377.
基本信息:
DOI:
中图分类号:R687.3;R318.01
引用信息:
[1]潘保顺,陈金水,王运涛等.新型后路带融合器寰枢椎内固定系统的生物力学有限元分析[J].中华骨与关节外科杂志,2025,18(09):802-808.
基金信息:
国家自然科学基金(81301602); 福建省自然科学基金(2024J011158); 第九〇〇医院青年自主创新项目孵化专项(2022QC10); 南京医科大学康达学院科研发展基金(KD2024KYJJ219)